skip to main content


Search for: All records

Creators/Authors contains: "Huang, Yihe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Earthquake nucleation is a crucial preparation process of the following coseismic rupture propagation. Under the framework of rate-and-state friction, it was found that the ratios of a to b parameters control whether earthquakes nucleate as an expanding crack or a fixed length patch. However, as an essential parameter in earthquake physics, critical slip distance DRS controls the weakening efficiency of fault strength and can influence the nucleation styles. Here we investigate the effects of DRS on nucleation styles in the context of fully dynamic seismic cycles by evaluating the evolution of the nucleation zone quantitatively when it accelerates from the tectonic loading rate to seismic slip velocity. The inferred values of DRS from small-scale laboratory faults are 1-100 μm, several orders smaller than those obtained from geophysical observations on large natural faults. Considering the scale-dependence of widely observed DRS, the ratio of DRS to velocity weakening asperity size W is applied to substitute the absolute value of DRS in this study. We find when DRS/W is relatively large (~10-5), a/b=0.5 can separate two nucleation styles as found previously. For a relatively small DRS/W (~10-6), however, a/b larger than 0.7 is necessary to produce the typical expanding crack-like nucleation style. When DRS/W<4x10-7 and a/b<0.8, the fixed length nucleation style dominates. For some cases with a/b>0.75, the initial yielding phase accelerates to a considerable slip velocity just before the subsequent expanding fracture phase, which may explain the generation of foreshock activities. Specially, the first yielding phase is possible to trigger dynamic events without a secondary fracture phase. Furthermore, when the nucleation site is not in the middle of the asperity, large enough a/b (e.g., 0.8) could induce a complex nucleation style as well as abundant interseismic aseismic transients. We also recognize a special twin nucleation style that incorporates a failed acceleration phase. Our results reveal the critical role of DRS on earthquake nucleation styles and suggest that the fixed length nucleation style may be more common for the range of DRS/W (~10-4-~10-7) observed on natural and laboratory faults. 
    more » « less
  2. Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. Hence, our research aims to develop a novel method to image fault damage zones using high-frequency P-waves reflected within them. Previous studies have demonstrated that fault damage zones can amplify high-frequency waves along directions close to fault strike. The associated frequency band of the amplified secondary peak may be used to estimate the width and velocity contrast of the fault damage zone. Here we use the stacked P-wave velocity spectra of M1.5–3 earthquakes in the Parkfield region to identify the azimuthal variation in high-frequency energy. Our preliminary results show that for 62% of the Parkfield clusters, stations close to the fault strike record more high-frequency energies around 10–20 Hz. The frequency band is lower than what we observed for the 2019 Ridgecrest earthquakes region, and corresponds to a fault zone velocity reduction of ~50% assuming a fault zone width of 200m. We also observe along-strike differences in our results, where clusters along some fault sections show greater azimuthal variation than clusters in other sections. Moreover, to account for the possible effects of site conditions underneath the stations, we will quantify their effects using the spectra of regional earthquakes. We will compute the root-mean-square spectra at different frequency bands for each event, and calculate the average deviation in spectra at each station. We can then generate an empirical correction term for each station as a function of frequency. By applying these corrections to the stacked P-wave velocity spectra of our earthquake clusters, we can separate the contribution of site effects from fault zone structures. Our results demonstrate that the new method can be applied to search for fault damage zone structures in different tectonic regions with broadband stations in order to enhance our understanding of the co-evolution of fault zones and earthquake cycle. 
    more » « less
    Free, publicly-accessible full text available December 12, 2024
  3. The temporal variation of elastic property of the bulk material surrounding the fault is considered an important contribution to the observed co-seismic velocity reduction and interseismic healing. Paglialunga et al. [2021] found that as fault normal stress increases, co-seismic velocity reduction becomes larger because more cracks reopen with higher stress drops. Larger normal stress can lead to smaller nucleation size and contribute to larger co-seismic slip. By contrast, with larger co-seismic velocity reduction and interseismic healing, more slow slip events can propagate in the seismogenic zone [Thakur and Huang, 2021], because the temporal velocity change related to fault zone damage modulates earthquake nucleation. Hence, fault normal stress and temporal damage zone structure evolution have opposite influences on the spatial distribution and recurrence intervals of earthquakes. We conducted 2-D anti-plane fully-dynamic seismic cycle simulations and explored the effects of fault normal stress on seismic cycle when there is coseismic damage and interseismic healing in the fault damage zone. The normal stress is in a range of 40-70 MPa and the co-seismic rigidity reduction is in a range of 5-8%. We find larger normal stress results in larger co-seismic slip and fewer slow slip events, while more co-seismic velocity reduction and interseismic healing leads to more partial ruptures as well as slow slip events. With the increase of both normal stress and seismic velocity change, more regular earthquakes occur and slow slip events gradually disappear. For the selected parameter space, the influence of seismic velocity change is not as significant as the effect of normal stress. However, fault zone maturity or the initial rigidity of fault damage zones should also affect the competitive relationship between normal stress and seismic velocity change, and we will characterize earthquakes and slow-slip events in immature and mature fault damage zones when both on-fault normal stress and off-fault seismic velocity vary over earthquake cycles. 
    more » « less
  4. Fault damage zones can influence various aspects of the earthquake cycle, such as the recurrence intervals and magnitudes of large earthquakes. The properties and structure of fault damage zones are often characterized using dense arrays of seismic stations located directly above the faults. However, such arrays may not always be available. Hence, our research aims to develop a novel method to image fault damage zones using broadband stations at relatively larger distances. Previous kinematic simulations and a case study of the 2003 Big Bear earthquake sequence demonstrated that fault damage zones can act as effective waveguides, amplifying high-frequency waves along directions close to fault strike via multiple reflections within the fault damage zone. The amplified high-frequency energy can be observed by stacking P-wave spectra of earthquake clusters with highly-similar waveforms (Huang et al., 2016), and the frequency band which is amplified may be used to estimate the width and velocity contrast of the fault damage zone. We attempt to identify the high-frequency peak associated with fault zone waves in stacked spectra by conducting a large-scale study of small earthquakes (M1.5–3). We use high quality broadband data from seismic stations at hypocentral distances of 20-80 km in the 2019 Ridgecrest earthquake regions. First, we group the Ridgecrest earthquakes in clusters by their locations and their waveform similarity, and then stack their velocity spectra to average the source effects of individual earthquakes. Our results show that the stations close to the fault strike record more high-frequency energies around the characteristic frequency of fault zone reflections. We find that the increase in the amount of high-frequencies is consistent across clusters with average magnitudes ranging from 1.6-2.4, which suggests that the azimuthal variation in spectra is caused by fault zone amplification rather than rupture directivity. We will apply our method to other fault zones in California, in order to search for fault damage zone structures and estimate their material properties. 
    more » « less
  5. ABSTRACT Although the Brune source model describes earthquake moment release as a single pulse, it is widely used in studies of complex earthquakes with multiple episodes of high moment release (i.e., multiple subevents). In this study, we investigate how corner frequency estimates of earthquakes with multiple subevents are biased if they are based on the Brune source model. By assuming complex sources as a sum of multiple Brune sources, we analyze 1640 source time functions of Mw 5.5–8.0 earthquakes in the seismic source characteristic retrieved from deconvolving teleseismic body waves catalog to estimate the corner frequencies, onset times, and seismic moments of subevents. We identify more subevents for strike-slip earthquakes than dip-slip earthquakes, and the number of resolvable subevents increases with magnitude. We find that earthquake corner frequency correlates best with the corner frequency of the subevent with the highest moment release (i.e., the largest subsevent). This suggests that, when the Brune model is used, the estimated corner frequency and, therefore, the stress drop of a complex earthquake is determined primarily by the largest subevent rather than the total rupture area. Our results imply that, in addition to the simplified assumption of a radial rupture area with a constant rupture velocity, the stress variation of asperities, rather than the average stress change of the whole fault, contributes to the large variance of stress-drop estimates. 
    more » « less
  6. Abstract

    Sparse offshore coverage of seismic networks has hindered detailed studies of submarine earthquakes and their associated seismic hazard. We present results of our analysis of a diver's recording of acoustic signals from anML = 5.6 earthquake in the Persian Gulf. We model the signals as a set of several shallow waterTphases the frequency and group velocity of which are determined by bathymetry. We show that the audio track from this recording can provide reliable estimates of earthquake location and seismic moment. We also show that the reported shaking in the southern Persian Gulf, >170 km from the source of this small earthquake could result fromTwaves traveling through the entire width of the basin. Our results point to rudimentary and affordable underwater microphones similar to those used in the divers' cameras as tools to build efficient, low‐cost networks for the study of offshore events and early warning.

     
    more » « less
  7. SUMMARY

    Backprojection has proven useful in imaging large earthquake rupture processes. The method is generally robust and requires relatively simple assumptions about the fault geometry or the Earth velocity model. It can be applied in both the time and frequency domain. Backprojection images are often obtained from records filtered in a narrow frequency band, limiting its ability to uncover the whole rupture process. Here, we develop and apply a novel frequency-difference backprojection (FDBP) technique to image large earthquakes, which imitates frequencies below the bandwidth of the signal. The new approach originates from frequency-difference beamforming, which was initially designed to locate acoustic sources. Our method stacks the phase-difference of frequency pairs, given by the autoproduct, and is less affected by scattering and -time errors from 3-D Earth structures. It can potentially locate sources more accurately, albeit with lower resolution. In this study, we first develop the FDBP algorithm and then validate it by performing synthetic tests. We further compare two stacking techniques of the FDBP method, Band Width Averaged Autoproduct and its counterpart (BWAP and non-BWAP), and their effects in the backprojection images. We then apply both the FDBP and conventional backprojection methods to the 2015 M7.8 Gorkha earthquake as a case study. The backprojection results from the two methods agree well with each other, and we find that the peak radiation loci of the FDBP non-BWAP snapshots have standard error of less than 0.33° during the rupture process. The FDBP method shows promise in resolving complex earthquake rupture processes in tectonically complex regions.

     
    more » « less
  8. Abstract

    Large megathrust ruptures can create notable tsunamis in tectonic back‐arc basins as was documented during the 2011 Tohoku earthquake in the Sea of Japan. We present a physical analysis of the excitation of back‐arc tsunamis by extending the fore‐arc deformation field from the earthquake centroid into the back‐arc basin and identify fault dip as the main geometrical contributor to the propagation of these events. As such, our theoretical model along with a large number of numerical simulations reveal that the dominant period of back‐arc tsunamis is different from that of the fore‐arc waves and thus they are a new class of tsunamis. Through numerical simulations and analysis of data from the 2011 Tohoku event, we show that a combination of near‐ to intermediate‐field horizontal and vertical deformation as well as transient surface waves is necessary to reconstruct the back‐arc propagation. We find that while seismic surface waves can affect coastal tsunami amplitudes in the back‐arc, their effect comes second to that of the horizontal component of deformation as manifested via bathymetric gradient. We then simulate back‐arc tsunamis and the hazard in the Sea of Japan from several potential future earthquake scenarios in the Japan Trench and Nankai Trough. Our results show that the coseismic excitation of back‐arc tsunamis can result in considerable waves close to 1 m in the Sea of Japan, near the Niigata Prefecture from megathrust earthquakes.

     
    more » « less
  9. Faults are usually surrounded by damage zones associated with localized deformation. Here we use fully dynamic earthquake cycle simulations to quantify the behaviors of earthquakes in fault damage zones. We show that fault damage zones can make a significant contribution to the spatial and temporal seismicity distribution. Fault stress heterogeneities generated by fault zone waves persist over multiple earthquake cycles that, in turn, produce small earthquakes that are absent in homogeneous simulations with the same friction conditions. Shallow fault zones can produce a bimodal depth distribution of earthquakes with clustering of seismicity at both shallower and deeper depths. Fault zone healing during the interseismic period also promotes the penetration of aseismic slip into the locked region and reduces the sizes of fault asperities that host earthquakes. Hence, small and moderate subsurface earthquakes with irregular recurrence intervals are commonly observed in immature fault zone simulations with interseismic healing. To link our simulation results to geological observations, we will use simulated fault slip at different depths to infer the timing and recurrence intervals of earthquakes and discuss how such measurements can affect our understanding of earthquake behaviors. We will also show that the maturity and material properties of fault damage zones have strong influence on whether long-term earthquake characteristics are represented by single events. 
    more » « less
  10. Predicting the onset and timing of fault failure is one of the ultimate goals of seismology. However, our current understanding of the earthquake preparation and nucleation process is limited. One direction towards understanding this process is looking at precursory signals preceding large earthquakes. Previous laboratory experiments have studied robust precursory signals, observed as temporal changes in pressure and shear wave velocities during the seismic cycle. The effects of such precursory velocity changes on the seismic cycle are not well understood. We use numerical models to simulate fully-dynamic earthquake cycles in 2D strike-slip fault systems with antiplane geometry, surrounded by a narrow fault-parallel damage zone. By imposing shear wave velocity changes inside fault damage zones, we investigate the effects of these precursors on multiple stages of the seismic cycle, including nucleation, coseismic, postseismic, and interseismic stages. Our modeling results show a wide spectrum of fault-slip behaviors including fast earthquakes, slow-slip events, and variable creep. One primary effect of the imposed velocity precursor is the facilitation of the otherwise slow-slip event to grow into a fully dynamic earthquake. Furthermore, the onset time of these precursors have significant effects on the nucleation phase of the earthquakes, and earlier onset of precursors causes the earthquakes to nucleate earlier with a smaller nucleation size. Our results highlight the importance of short and long-term monitoring of fault zone structures for better assessment of regional seismic hazard. 
    more » « less